Welfare effects of smallholder farmers’ participation in livestock markets in Zambia

Mary Lubungu

Presentation outline

- Introduction
- Data sources
- Estimation technique
- Results and discussions
- Conclusions
Introduction

- Demand for livestock/products is increasingly rapidly in developing countries
 - trend expected to continue due to
 - Human population growth, rising incomes, increasing urbanization
- Ideally urban-rural synergies can create markets for smallholder livestock producers thus,
 - Contributing to rural poverty reduction
- Especially that rural poverty rates in Zambia have remained stubbornly high (80%) for more than a decade (CSO, 2009, 2011)
Introduction

Questions

- Does participation in livestock markets improve the smallholder household welfare?
- Are there any biases in the distribution of benefits between poor and better off households?

Conflicting evidence exist about who derives more income from livestock sales – “better off households or poor households”

- In Pakistan, Malawi, India, Asia, Latin America, and Philippines - poorer households’ benefit more (Pica-Ciamarra et al., 2011)
- In Burkina Faso - better off households’ benefit more (Wouterse and Taylor, 2008)
Introduction

- While these studies present valuable information,
 - none of them has employed econometric techniques
 - their finding are based on bivariate analysis
 - which fails to control for other factors that may affect incomes
 - Failure to control for other factors could potentially lead to biased estimates

- This study provides useful empirical evidence on the potential for livestock market participation
 - to contribute to raising incomes and reducing poverty among smallholder farmers in general
 - and among poor households in particular
Zambia

- Landlocked
- Population: 13.9 million (64% rural)
- GDP/cap: US$1,600 (26/47 in SSA)
- Rural poverty rate: 80%
- Agriculture contributes
 - 20% to GDP
 - 85% to labor force
- Single rainy season (Oct.-Apr.)

Source: CIA World Factbook
Data

- Nationally representative HH survey
 - 394 standard enumeration areas (map)
 - Smallholder HHs (cultivate <20 ha)
 - Farm & non-farm activities, demographics, assets
 - Wave 1: 2001 (6,922 HHs)
 - Wave 2: 2004 (5,358 HHs)
 - Wave 3: 2008 (8,094)
 - Treat each survey wave as separate pooled cross sectional data
 - 20,435 pooled HHs
 - 4,261 (20.8%) HHs owned cattle
Welfare indicators

- Traditionally, household income or expenditure is used as a measure of welfare
 - In developing countries, expenditure is preferred (Meyer and Sullian, 2003; Ravallion, 1992)
 - Due to under reporting of income
 - However, collection of consumption data is costly and datasets are often much smaller
- Accurate estimated income is an important indicator
 - Provide more information about income strategies and inequality (Covarrubias, de la O Campos, and Zezza, 2009)
Welfare indicator used

- Total household income which includes
 - Crop, livestock and off farm
- Income for 2001 and 2004 were adjusted for inflation using the consumer price index
 - The base period for real income is 2008
- To ensure intra-household comparisons, we adjust the household income by adult equivalent

Indaba Agricultural Policy Research Institute
Estimation of welfare

- Employed Roy’s self selection model (Roy, 1951)
 - Individuals select alternatives that provides greatest utility
- Gain from participation (average treatment effect on the treated)
 \[ATT = E(Y_{1i} - Y_{0i}|w_i = 1) \]
- ATT estimated on a sample exhibiting common support
- Matching Techniques
 - Nearest neighbor
 - Stratification
 - Kernel
 - Radius
Estimation the income gap between the poverty class

- Employed the Blinder-Oaxaca three ford decomposition technique (Jann, 2008)

\[Y^a - Y^b = \left(\bar{X}^a - \bar{X}^b \right) \hat{\beta} + \bar{X}^b \left(\hat{\beta}^a + \hat{\beta}^b \right) + \left(\bar{X}^a - \bar{X}^b \right) \left(\hat{\beta}^a + \hat{\beta}^b \right) \]

- The first part of the right hand side is the expected change in the group of poor households mean income if they had endowments of non-poor households
- The second component measures the expected change in the group of poor households’ mean income if they had coefficients of non-poor households
- The third component accounts for measures in the differences in endowments and coefficients simultaneously
- Selection bias corrected via inverse mills ratio
Results
Summary statistics of selected variables

<table>
<thead>
<tr>
<th>Participation status in cattle markets</th>
<th>Poverty class among participants</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>non-participants</td>
</tr>
<tr>
<td>Value of assets (ZWK)</td>
<td>5,632</td>
</tr>
<tr>
<td>Household income (ZWK)</td>
<td>1,616</td>
</tr>
<tr>
<td>Crop share of total income</td>
<td>70.63</td>
</tr>
<tr>
<td>Livestock share of total income</td>
<td>6.99</td>
</tr>
<tr>
<td>Off-farm share of total income</td>
<td>22.22</td>
</tr>
<tr>
<td>HCI (%)</td>
<td>31.66</td>
</tr>
</tbody>
</table>

Note: *p<0.10, **p<0.05, ***p<0.01; HCI=household crop commercialization index (gross value of crop sales/gross value of crop production)*100; The 2008 Zambia Kwacha to US$ exchange rate was 3.829
Source: CSO/MACO/FSRP Supplemental Survey
Estimation of propensity score and balancing tests

- PS-only covariates significantly correlated with income were included
- Common support requirement satisfied within [0.08191682, 0.92294961]
- Balancing test results (next slide) confirm the existence of strong bias for most covariates
- PS matching successfully eliminated this bias as evidenced by the
 - Insignificant t-test after matching
 - Insignificant likelihood ratio test (Ho: all covariates jointly equal to zero) after matching (10.56, p-value=0.957)
 - Which was significant prior to matching (198.11, p-value=0.000)
Balancing Properties of Covariates in Treated and Control Groups (selected vars)

| Covariates | Sample | Mean treated units | Mean control units | % bias between treated and controls | % reduction in bias | H0: Mean(treated) = Mean(control) | t | p>|t| |
|--------------------------------------|-------------|--------------------|--------------------|------------------------------------|---------------------|-----------------------------------|--------|-----|
| Number of HH members | Unmatched | 8.168 | 7.290 | 21.3 | 85.3 | 6.39 | 0.000 |
| | Matched | 8.168 | 8.297 | -3.1 | 85.3 | -0.64 | 0.523 |
| Age of household head | Unmatched | 51.864 | 50.163 | 11.3 | 97.5 | 3.20 | 0.001 |
| | Matched | 51.864 | 51.906 | -0.3 | 97.5 | -0.07 | 0.946 |
| Years of schooling of HH head | Unmatched | 6.731 | 5.949 | 20.1 | 91.7 | 5.87 | 0.000 |
| | Matched | 6.731 | 6.795 | -1.7 | 91.7 | -0.39 | 0.695 |
| Number of goats owned | Unmatched | 5.245 | 3.470 | 20.7 | 86.9 | 6.58 | 0.000 |
| | Matched | 5.245 | 5.012 | 2.7 | 86.9 | 0.57 | 0.567 |
| Landholding size (ha) | Unmatched | 5.047 | 3.995 | 20.6 | 89.9 | 6.48 | 0.000 |
| | Matched | 5.047 | 5.154 | -2.1 | 89.9 | -0.43 | 0.669 |
| HH reporting non-farm income (=1) | Unmatched | 0.666 | 0.591 | 15.6 | 81.9 | 4.42 | 0.000 |
| | Matched | 0.666 | 0.680 | -2.8 | 81.9 | -0.68 | 0.495 |
Estimates of Average Treatment Effect of Cattle Market Participation on log of Per Capita Household Income

<table>
<thead>
<tr>
<th>Matching technique</th>
<th>Number of households.</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Participating group</td>
<td>control group</td>
<td>ATE</td>
<td>Bootstrapped Standard error</td>
<td>t-stat</td>
</tr>
<tr>
<td>Nearest neighbor</td>
<td>1,099</td>
<td>806</td>
<td>0.524</td>
<td>0.062</td>
<td>8.516</td>
</tr>
<tr>
<td>Stratification</td>
<td>1,096</td>
<td>3,160</td>
<td>0.549</td>
<td>0.038</td>
<td>14.373</td>
</tr>
<tr>
<td>Kernel</td>
<td>1,099</td>
<td>3,137</td>
<td>0.574</td>
<td>0.029</td>
<td>19.865</td>
</tr>
<tr>
<td>Radius</td>
<td>1,099</td>
<td>3,157</td>
<td>0.640</td>
<td>0.036</td>
<td>17.540</td>
</tr>
</tbody>
</table>

- All else constant, participation in cattle markets raises per capita household income by about 52-64% on average
Results of Linear Decomposition of Log of Household Income: poor vs. non-poor households

Panel A: mean predications

<table>
<thead>
<tr>
<th></th>
<th>Bias unadjusted</th>
<th></th>
<th>Bias adjusted</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Robust standard error</td>
<td>Mean</td>
<td>Robust standard error</td>
</tr>
<tr>
<td>Non-poor households</td>
<td>8.302</td>
<td>0.037</td>
<td>** ***</td>
<td>8.307</td>
</tr>
<tr>
<td>Poor households</td>
<td>6.614</td>
<td>0.021</td>
<td>** ***</td>
<td>6.616</td>
</tr>
<tr>
<td>non-poor-poor differential</td>
<td>1.688</td>
<td>0.043</td>
<td></td>
<td>1.691</td>
</tr>
</tbody>
</table>

Panel B: Simultaneous change in endowment and coefficient

<table>
<thead>
<tr>
<th></th>
<th>Bias unadjusted</th>
<th></th>
<th>Bias adjusted</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Robust standard error</td>
<td>Mean</td>
<td>Robust standard error</td>
</tr>
<tr>
<td>Three-fold endowment</td>
<td>0.455</td>
<td>0.042</td>
<td>** ***</td>
<td>0.453</td>
</tr>
<tr>
<td>Coefficients</td>
<td>1.356</td>
<td>0.053</td>
<td>** ***</td>
<td>1.360</td>
</tr>
<tr>
<td>Interaction</td>
<td>-0.123</td>
<td>0.057</td>
<td>**</td>
<td>-0.123</td>
</tr>
</tbody>
</table>

Note: the difference is between the predicated log of household income of the non-poor and poor households among the participating households only. Significance level *p<0.10, **p<0.05, ***p<0.01
Results of Linear Decomposition of Log of Household Income: poor vs. non-poor households

Panel A:
- absolute value for the antilog of predicated average incomes are poor-ZMK4031.44 (US$1293.14) and non-poor ZMK 1293.14 (US$337.68) yielding a difference of ZMK2738.30 (US$715.18)

Panel B
- endowment and coefficients are positive and significant suggesting that
 - poor HHs would statistically earn more than non-poor HHs if poor HHs retained their coefficients but had endowments comparable to those of non-poor HHs
 - Similarly, poor HHs would earn significantly more than non-poor HHs if poor HHs retained their endowment but had the coefficients of the non-poor HHs
Summary of the Decomposition Results (as percentages)

<table>
<thead>
<tr>
<th>Amount attributable:</th>
<th>Bias unadjusted</th>
<th>Bias adjusted</th>
</tr>
</thead>
<tbody>
<tr>
<td>- due to endowments (E):</td>
<td>-203.7</td>
<td>-123.9</td>
</tr>
<tr>
<td>- due to coefficients (C):</td>
<td>33.2</td>
<td>33.2</td>
</tr>
<tr>
<td>Shift coefficient (U):</td>
<td>-236.8</td>
<td>-157.1</td>
</tr>
<tr>
<td>Raw differential (R) (E+C+U):</td>
<td>372.4</td>
<td>292.7</td>
</tr>
<tr>
<td>Adjusted differential (D) (C+U):</td>
<td>168.8</td>
<td>168.8</td>
</tr>
<tr>
<td>Endowments as % total (E/R):</td>
<td>19.7</td>
<td>19.7</td>
</tr>
<tr>
<td>Discrimination as % total (D/R):</td>
<td>80.3</td>
<td>80.3</td>
</tr>
</tbody>
</table>

Note: U = unexplained portion of differential (difference between model constants); D = portion due to discrimination (C+U). Positive number indicates advantage to non-poor group; negative number indicates advantage to poor group.

- Inter group differences in characteristics or productive differences accounts for 123.9% in favor of poor HHs.
- However, productivity difference is not enough to offset the 292.7% advantage in shift coefficient (U).
- Overall, statistical discrimination accounts for 80.3% of the income differential in favor of non-poor households.
Conclusion

- Article determines welfare effects of participation in cattle markets
- Employ propensity score matching and decomposition techniques on nationally representative household survey data from smallholder farmers
- After correction for selection bias, we find that participation in cattle markets raises household income by over 50%
- decomposition results suggest that poor households derive relatively smaller benefits from participation than their non-poor counterparts due to 80.3% of the inter-group income differential
Conclusion

- The results suggest that with appropriate interventions, participation in livestock markets can
 - enhance the welfare of smallholder households and
 - contribute to poverty reduction
Thank you for your attention